CSCI 262
Data Structures

17 – Selection Sort

Selection Sort

- Input: a list of elements, e.g. integers
- Output: a list of the input elements in sorted order
- A simple solution:
 - Find the minimum element in the list
 - Swap it with the first element in the list
 - Sort the sublist after the first element
- This sorting algorithm is named selection sort.

Selection Sort Illustrated

Selection Sort Code

```cpp
template <typename T>
void selection_sort(vector<T> & vec) {
  int n = vec.size();
  for (int left = 0; left < n; left++) {
    int right = left;
    for (int j = left + 1; j < n; j++) {
      if (vec[j] < vec[right]) right = j;
    }
    swap(vec[left], vec[right]);
  }
}
```

Analyzing Selection Sort

Recall we want to count basic computer steps...

```
1 template <typename T>
2 void selection_sort(vector<T> & vec) {
  3   int n = vec.size();
  4   for (int left = 0; left < n; left++) {
  5     int right = left;
  6     for (int j = left + 1; j < n; j++) {
  7       if (vec[j] < vec[right]) right = j;
  8     }
  9   } swap(vec[left], vec[right]);
10 }
```

What is x? Ans: n – left – 1. How do we add these up?
Analyzing Selection Sort

Things we can easily count:
1 step (line 3)
4n steps (lines 5 and 10)

Things that are trickier:
n – left – 1 (different value of left each time)

Just have to count carefully:
1st time through:
left = 0, so n – left – 1 = n – 1
2nd time through:
left = 1, so n – left – 1 = n – 2
...
Last time through:
left = n – 1, so n – left – 1 = 0

Putting it all together, we have:

\[1 + 4n + n(n - 1)/2\]
\[= n^2/2 + 7n/2 + 1\]

What is the “big-O” of this expression?

Visual Analysis

Preceding pages were very rigorous in counting
Sometimes, a visual approach is simpler:

<table>
<thead>
<tr>
<th>Original list</th>
<th>1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements “touched” in first loop iteration</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>Elements “touched” in second loop iteration</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Elements “touched” in third loop iteration</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Last iteration</td>
<td>1 2 3 5 6 7</td>
</tr>
</tbody>
</table>

Cost: O(1 + 2 + ... + n)

Analysis Complete

Selection sort is O(n^2)

Can we do better? (Yes, to be continued)

Up Next

- Friday, March 23
 - Lab 9 (continued)
 - Extra credit APTs assigned
 - SPRING BREAK!
- Monday, April 2
 - Lab 9 due