Software Homework #9 (3.5 points)
Due to Gradescope by 11:45 PM on Tuesday, February 25th
You need to submit a pdf to Gradescope; failure to mark which pages your questions are on will result in a 10% deduction on your grade

Homework Goal: Work with assembly language and machine language

1. Rank the following programming languages from the lowest level (left) to the highest level (right): Python, Machine language, Assembly language (0.5 points)


```
```
3. Suppose \(a, b, c, \) and \(d \) are in memory locations \(M[100], M[101], M[110], \) and \(M[111] \), respectively. Write an algebraic equation that represents the following assembly language instructions: (1 point)

\[
\begin{align*}
\text{ADD } & M[100] \text{ } M[100] \text{ } M[100] \\
\text{ADD } & M[100] \text{ } M[100] \text{ } M[100] \\
\text{ADD } & M[111] \text{ } M[111] \text{ } M[111] \\
\text{ADD } & M[110] \text{ } M[100] \text{ } M[111] \\
\text{ADD } & M[110] \text{ } M[110] \text{ } M[101]
\end{align*}
\]

4. Assume the variables \(v, w, x, y, \) and \(z \) are stored in memory locations \(M[001], M[010], M[011], M[100], \) and \(M[101] \), respectively. Using the machine language instructions shown in Section 4.2, fill in the blanks to translate the following algorithmic operations into their machine language equivalents. You can overwrite a memory location for an intermediate calculation, if that location is no longer needed. See Zybooks activities 4.2.2 and 4.2.3 for examples. (1 point)

a. Set \(v \) to the value of \((w + x) + (y + z) \)

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 0 & & & & \\
1 & 1 & 1 & 0 & 0 & & & & \\
1 & 1 & & & & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

b. Input \(v \) from the user, then display \(v \times 2 \)

\[
\begin{array}{cccccccc}
& & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & & & & & & & & & \\
& & & & & 0 & 0 & 1 & & & \\
\end{array}
\]